tified)

WINTER-19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject Code: 22330

ENGINEERING

Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
1	(A)	Attempt any FIVE of the following:	10- Total Marks
	(a)	Define: (i) Apparent power (ii) Real power	2M
	Ans:	(i) Apparent power It is the product of rms values of applied voltage and circuit current. Unit: volt-ampere (VA) OR kilo-volt-ampere (kVA) OR Mega-volt-ampere (MVA) $\mathrm{S}=\mathrm{VI}=\mathrm{I}^{2} \mathrm{Z} \text { volt-ampere (VA) }$ (ii)Real power The active power is defined as the average power Pavg taken by or consumed by the given circuit. (OR)	1 M for each definitio n

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

	It is the power which is actually dissipated in the circuit resistance. $\mathrm{P}=\mathrm{V} . \mathrm{I} . \operatorname{Cos} \emptyset \quad$ Unit: - Watt OR Kilowatt	
(b)	Write equation of resultant impedance in R-L circuit.	2M
Ans:	The equation of resultant impedance in R-L circuit $Z=\sqrt{\left(R^{2}+X_{L}^{2}\right)}$ Where , R=Resistance $\mathrm{X}_{\mathrm{L}}=\text { Inductive Reactance }=2 \pi \mathrm{fL} \Omega \text {. }$	2 M for equatio n
(c)	State condition for resonance in R-L-C series circuit.	2M
Ans:	The condition for resonance in R-L-C series circuit. i) Inductive Reactance should be equal to capacitive reactance. That is $X_{L}=X_{C}$ ii) The power factor of the circuit is $\operatorname{Cos} \phi=1$ iii)The voltage and current in the R-L-C series circuit are in phase with each other. iv)Current in the circuit is maximum and given by $\mathrm{I}=\mathrm{V} / \mathrm{R}$. v)Impedance of the circuit is minimum and given by $Z=R$.	2M for any two conditio ns
(d)	Draw - (i) Practical voltage source (ii) Ideal current source	2M
Ans:	i) Practical voltage source	1 M for each diagram

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:

Model Answer

	ii) Ideal current source Where, $I_{s}=$ Current Source $\mathrm{R}_{\mathrm{s}}=$ internal resistance of source	
e)	Write formula for star to delta and delta to star transformation.	2M
Ans:	The formula star to delta conversion $\begin{aligned} & R_{a}=\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{1}} \\ & R_{b}=\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{2}} \\ & R_{c}=\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{3}} \end{aligned}$	1 M for star to delta transfor mation 1 M for delta to star transfor mation

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:
22330
Model Answer

	The formula for Delta to Star conversion- $\begin{aligned} R_{1} & =\frac{R_{b} R_{c}}{R_{r}+R_{b}+R_{c}} \\ R_{2} & =\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}} \\ R_{3} & =\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}} \end{aligned}$	
f)	State maximum power transfer theorem.	2M
Ans:	Maximum Power Transfer Theorem states that "Maximum power is transferred from the source to the load when the load resistance is equal to the Thevenin's equivalent resistance of the given circuit as seen from load terminals" $\text { .i. e, } R_{L}=R_{T H}$	2M for stateme nt
g)	Write equation of short circuit Y parameters.	2M
Ans:	The equation of short circuit Y parameters.	1 M for each equatio n

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:
22330

Model Answer

		$\left[\begin{array}{l} \mathrm{I}_{1} \\ \mathrm{I}_{2} \end{array}\right]=\left[\begin{array}{ll} \mathrm{Y}_{11} & \mathrm{Y}_{12} \\ \mathrm{Y}_{21} & \mathrm{Y}_{22} \end{array}\right]\left[\begin{array}{l} \mathrm{v}_{1} \\ \mathrm{v}_{2} \end{array}\right]$ $\begin{aligned} & \mathrm{I}_{1}=\mathrm{Y}_{11} \mathrm{~V}_{1}+\mathrm{Y}_{12} \mathrm{~V}_{2} \ldots \ldots \ldots \ldots .1 \\ & \mathrm{I}_{2}=\mathrm{Y}_{21} \mathrm{~V}_{1}+\mathrm{Y}_{22} \mathrm{~V}_{2} \ldots . . \end{aligned}$	
$\mathrm{Q} .$ No.	Sub Q. N.	Answers	Marking Scheme
2		Attempt any THREE of the following:	12- Total Marks
	a)	For R-C series circuit draw (i) Circuit diagram (ii) Vector diagram (iii) Waveform of voltage and current	4M
	Ans:	i)Circuit diagram	1M- circuit diagram, 1M- vector diagram, 2M- wavefor ms

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:
22330

Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network

Subject Code:
22330

Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code: 22330
Model Answer

Ans:	(a) (b) The open- circuit voltage across terminals A and B is $\begin{aligned} V_{o c} & =\text { drop across } R \\ & =5 \times 2=10 \mathrm{~V} \end{aligned}$ Hence, voltage source has a voltage of 10 V and the same resistance of 2Ω	2M- circuit diagram, 2Mconversi on
d)	Write the steps for finding the current through an element by Thevenin's theorem.	4M
Ans:	Steps to find Thevenin's equivalent circuit, taking an example is as follows:	1M each step

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code: 22330
Model Answer

1. From the given circuit (fig.a), Remove R_{L} from the terminals A and B and redraw the circuit as shown in Fig.b.
2. Calculate the open-circuit voltage $V_{o c}$ which appears across terminals A and B. As seen, $V_{\text {oc }}=$ drop across $R_{2}=I R_{2}$ where I is the circuit current when A and B are open.

$$
\begin{aligned}
& I=\frac{E}{R_{1}+R_{2}+r} \quad \therefore V_{o c}=I R_{2}=\frac{E R_{2}}{R_{1}+R_{2}+r}[r \text { is the internal } \\
& \text { resistance of battery] } \\
& \text { It is also called 'Thevenin voltage' } V_{\text {th }} \text {. }
\end{aligned}
$$

3.Now, imagine the battery to be removed from the circuit, leaving its internal resistance r behind and redraw the circuit, as shown in Fig.(c). When viewed inwards from terminals A and B, the equivalent resistance is given as,

$$
R=R_{2} \|\left(R_{1}+r\right)=\frac{R_{2}\left(R_{1}+r\right)}{R_{2}+\left(R_{1}+r\right)}
$$

This is called Thevenin's equivalent resistance $R_{\text {th }}$.
4.Connect R_{L} back across terminals A and B (fig. d)from where it was temporarily removed earlier.
Current flowing through RL is given by

$$
I=\frac{V_{t h}}{R_{t h}+R_{L}}
$$

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:
22330

Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:
Model Answer

WINTER-19 EXAMINATION

Model Answer

Ans:	At resonance frequency in RLC series circuit, we have inductive reactance is equal to capacitive reactance i.e. $X_{L}=X_{C}$ As, $X_{L}=2 \pi f_{r} L$ and $X_{C}=1 / 2 \pi f_{r} C$, we can write $\begin{aligned} \therefore \quad 2 \pi \mathrm{f}_{\mathrm{r}} \mathrm{~L} & =\frac{1}{2 \pi \mathrm{f}_{\mathrm{r}} \mathrm{C}} \\ \therefore \quad \mathrm{f}_{\mathrm{r}}^{2} & =\frac{1}{4 \pi^{2} \mathrm{LC}} \\ \therefore \mathrm{f}_{\mathrm{r}} & =\frac{1}{2 \pi \sqrt{\mathrm{LC}}} \mathrm{~Hz} \end{aligned}$ Where fr is the resonant frequency in RLC series circuit.	4 M
c)	Derive an expression for delta to star transformation.	4M
Ans:	Equivalent delta and star network For delta network the resistance between the terminals 1 and 2 consists of R_{12} in parallel with $\left(R_{23}+R_{31}\right)$ Hence , the resistance between the terminals 1 and 2 is	1M

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:
22330
Model Answer

$=\frac{R_{12}\left(R_{23}+R_{31}\right)}{R_{12}+R_{23}+R_{31}}$

In case of star network the resistance between the terminals 1 and 2 is=R1+R2,so we get

$$
R_{1}+R_{2}=\frac{R_{12}\left(R_{23}+R_{31}\right)}{R_{12}+R_{23}+R_{31}}
$$

$$
R_{2}+R_{3}=\frac{R_{23}\left(R_{33}+R_{12}\right)}{R_{12}+R_{23}+R_{31}}
$$

Subtracting equation(ii) from(i , we get

$$
\begin{aligned}
& R_{1}-R_{3}=\frac{R_{12} R_{23}+R_{12} R_{31}-R_{23} R_{31}-R_{23} R_{12}}{R_{12}+R_{23}+R_{31}} \\
& R_{1}-R_{3}=\frac{R_{12} R_{31}-R_{23} R_{31}}{R_{12}+R_{23}+R_{31}}
\end{aligned}
$$

$$
R_{3}+R_{1}=\frac{R_{31}\left(R_{12}+R_{23}\right)}{R_{12}+R_{23}+R_{31}}
$$

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:
22330

Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:
22330
Model Answer

$\begin{array}{l\|l} \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
4		Attempt any THREE of the following :	12- Total Marks
	(a)	A series combination of resistance 100 ohm and capacitance $50 \mu \mathrm{f}$ is connected in series to a $\mathbf{2 3 0}$ V, $\mathbf{5 0 H Z}$ supply. Calculate (i) Capacitive reactance (ii) Current (iii) Power factor (iv) Power consumed	4M
	Ans:	Solution: For RC series circuit	1M 1M 1M

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code: 22330
Model Answer

	Given $R=100 \Omega, C=50 \mu \mathrm{f}, \mathrm{V}=230 \mathrm{~V}, f=50 \mathrm{~Hz}$ (i) Capacitive Reactance $x_{c}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi \times 50 \times 50 \times 10^{-6}}=63.66 \Omega$ (ii) Current $\begin{aligned} I=\frac{v}{z} & =\frac{V}{\sqrt{R^{2}+x_{c}^{2}}}=\frac{230}{\sqrt{(100)^{2}+(63.66)^{2}}} \\ & =\frac{230}{118.54}=194 \end{aligned}$ (iii) Power Factor $\cos \phi=\frac{R}{Z}=\frac{100}{118.54}=0.8435 \text { leading }$ (iv) Power consumed $\begin{aligned} P & =v \cos \phi=230 \times 1.94 \times 0.8435 \\ & =376.36 \mathrm{w} \end{aligned}$	1M
(b)	Two unpedauces given by $\mathbf{Z 1}=10+\mathrm{j} 5$ and $\mathbf{Z 2}=8+\mathrm{j} 9$ are joined in parallel and connected across a voltage of $\mathrm{V}=\mathbf{2 0 0}+\mathbf{j} \mathbf{0}$. Calculate the circuit current and branch currents. Draw the vector diagram.	4M
Ans:	Solution: Given, $\quad Z 1=10+j 5, \quad Z 2=8+j 9, \quad V=200+j 0$	

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:

Model Answer

	Given: $z_{1}=10+j 5, z_{2}=8+j 9$ and $v=200+j 0$ To find circuit current first we have to calculate total admittance a Total admittance $\begin{aligned} Y & =Y_{1}+Y_{2}=\frac{1}{Z_{1}}+\frac{1}{z_{2}}=\frac{1}{(10+j 5)^{2}}+\frac{1}{(8+j 9)} \\ & =\frac{1}{11.18 \angle 26.56^{\circ}}+\frac{1}{12.04 \angle 48.36^{\circ}} \\ & =0.089 \angle-26.56^{\circ}+0.083 \angle-48.36^{\circ} \\ & =(0.08-0.04 j)+(0.06-0.06 \mathrm{j}) \\ & =0.14-0.1 j^{\circ} \\ & =0.17 \angle-35.53^{\circ} \end{aligned}$ (b) $\begin{aligned} \text { Circuit current, } I & =V \times Y \\ & =\left(200 \angle 0^{\circ}\right)\left(0.17\left(35.53^{\circ}\right)\right. \\ & =34 \angle-35.53^{\circ} \end{aligned}$ (c) Branch current $\begin{aligned} I_{1} & =V \times Y_{1} \\ & =\left(200<0^{\circ}\right)\left(0.089<-26.56^{\circ}\right) \\ & =17.8<-26.56^{\circ} \mathrm{A} \\ I_{2} & =v \times Y_{2} \\ & =\left(200<0^{\circ}\right)\left(0.083 \angle-48.36^{\circ}\right) \\ & =6.6<-48.36^{\circ} \mathrm{A} \end{aligned}$ (d) Vector Diagram	1M
(c)	An a.c series circuit has resistance of 10 ohm , inductance of 0.1 H and capacitance of $10 \mu \mathrm{f}$, voltage applied to circuit is 200 V . find (i) Resonant frequency (ii) Current at resonance (iii) Power at resonance	4M

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:
22330
Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code: 22330

Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:
22330

Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:
22330

Model Answer

Tracing circuit from $A \& B$, we have $15 \Omega \& 10 \Omega$ resistor in parallel.
\therefore Its equivalent resistance $R_{\text {eq }}=\frac{15 \times 10}{15+10}=6 \Omega$
Now $6 \Omega, 6 \Omega \& 4 \Omega$ resistor are in series,
\therefore we have $R_{5}=6+6+4=16 \Omega$
\therefore Norton's equivalent resistance $R_{N}=16 \Omega$

(5) Dynamic Resistare of coil cirait

$$
\begin{aligned}
& z_{r}=\frac{L}{C R} \\
& z_{r}=\frac{200 \times 10^{-6}}{126.6 \times 10^{-12} \times 20}=78957 \Omega
\end{aligned}
$$

WINTER-19 EXAMINATION Subject Name: Electric circuits and network Subject Code: 22330

Model Answer

WINTER-19 EXAMINATION

Subject Name: Electric circuits and network
Subject Code: 22330
Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code: 22330
Model Answer

ourpeqezfers :

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code: 22330

Model Answer

OURPQequters :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:
22330

Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code: 22330
Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code:
22330

Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code: 22330
Model Answer

WINTER-19 EXAMINATION Subject Name: Electric circuits and network Subject Code: 22330

Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code: 22330

Model Answer

WINTER-19 EXAMINATION
Subject Name: Electric circuits and network
Subject Code: 22330

Model Answer

