

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

1

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
1	(A)	Attempt any FIVE of the following:	10- Total Marks
	(a)	Define:	2M
		(i) Apparent power (ii) Real power	
	Ans:	(i) Apparent power	
		It is the product of rms values of applied voltage and circuit current.	1 M for
		Unit: volt-ampere (VA) OR kilo-volt-ampere (kVA) OR Mega-volt-ampere (MVA)	each definitio
		$S = VI = I^2 Z \text{ volt-ampere (VA)}$	n
		(ii)Real power	
		The active power is defined as the average power Pavg taken by or consumed by the given circuit.	
		(OR)	

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

Ans:	i) Practical voltage source	1 M eac diag
	(i) Practical voltage source (ii) Ideal current source	
(d)	Draw –	2M
	v)Impedance of the circuit is minimum and given by Z =R.	
	'	
	iv)Current in the circuit is maximum and given by I =V/R.	
	iii)The voltage and current in the R-L-C series circuit are in phase with each other.	
	ii) The power factor of the circuit is $\cos \phi = 1$	ns
	i) Inductive Reactance should be equal to capacitive reactance. That is $X_L = X_C$	any con
Ans:	The condition for resonance in R-L-C series circuit.	2M
(c)	State condition for resonance in R-L-C series circuit.	2M
	X_L =Inductive Reactance = $2\pi f L \Omega$.	
	Where ,R=Resistance	
	$Z = \sqrt{(R^2 + X_L^2)}$	n
	- (-2 -2)	equ
Ans:	The equation of resultant impedance in R-L circuit	2 M
(b)	Write equation of resultant impedance in R-L circuit.	2M
	P = V.I.CosØ Unit: - Watt OR Kilowatt	
	It is the power which is actually dissipated in the circuit resistance.	

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

1. From the given circuit (fig.a), Remove R_L from the terminals A and B and redraw the circuit as shown in Fig.b.

2. Calculate the open-circuit voltage V_{oc} which appears across terminals A and B. As seen, V_{oc} = drop across R_2 = IR_2 where I is the circuit current when A and B are open.

$$I = \frac{E}{R_1 + R_2 + r}$$
 $\therefore V_{oc} = IR_2 = \frac{ER_2}{R_1 + R_2 + r}$ [r is the internal resistance of battery]

It is also called 'Thevenin voltage' V_{th} .

Now, imagine the battery to be removed from the circuit, leaving its internal resistance r behind and redraw the circuit, as shown in Fig.(c). When viewed inwards from terminals A and B, the equivalent resistance is given as,

$$R = R_2 || (R_1 + r) = \frac{R_2(R_1 + r)}{R_2 + (R_1 + r)}$$

This is called Thevenin's equivalent resistance R_{th}

4.Connect R_L back across terminals A and B (fig.d) from where it was temporarily removed earlier.

Current flowing through RL is given by

$$I = \frac{V_{th}}{R_{th} + R_L}$$

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any THREE of the following :	12- Total Marks
	a)	Explain the concept of initial and final conditions in switching circuits for elements R and L.	4M
	Ans:	Concept of Initial and final condition in switching circuits for R: Consider a resistor is connected to a voltage source, using a switch as shown in fig below	2M for resistan
		V +	2M for inductan ce
		The switch is closed at time t = 0, so we get V= iR which is time independent equation. Here current changes as per voltage without any time delay. There is no change in the value of resistor R, it remains same for initial condition and final condition.	
		R R R	
		Initial condition equivalent circuit at t=0+ equivalent circuit at t= ∞	
		Concept of Initial and final condition in switching circuits for L:	
		Consider a inductor is connected to voltage source as shown in fig below:	

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

13

$= \frac{R_{12} (R_{23} + R_{31})}{R_{12} + R_{23} + R_{31}}$

In case of star network the resistance between the terminals 1 and 2 is=R1+R2,so we get

$$R_{1} + R_{2} = \frac{R_{12} (R_{23} + R_{31})}{R_{12} + R_{23} + R_{31}}$$

$$R_{2} + R_{3} = \frac{R_{23} (R_{31} + R_{12})}{R_{12} + R_{23} + R_{31}}$$

$$R_{3} + R_{1} = \frac{R_{31} (R_{12} + R_{23})}{R_{12} + R_{23} + R_{31}}$$

----ii & iii)

Subtracting equation(ii) from(i), we get

$$R_{1} - R_{3} = \frac{R_{12} R_{23} + R_{12} R_{31} - R_{23} R_{31} - R_{23} R_{12}}{R_{12} + R_{23} + R_{31}}$$

$$R_{1} - R_{3} = \frac{R_{12} R_{31} - R_{23} R_{31}}{R_{12} + R_{23} + R_{31}} - \frac{R_{12} R_{31} - R_{23} R_{31}}{R_{12} + R_{23} + R_{31}} - \frac{R_{12} R_{31} - R_{23} R_{31}}{R_{12} + R_{23} + R_{31}} - \frac{R_{12} R_{31} - R_{23} R_{31}}{R_{12} + R_{23} + R_{31}}$$

1M

1M

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

	Adding equations (iii) and(iv), we have	1M
	$2 R_{1} = \frac{R_{31} R_{12} + R_{31} R_{23} + R_{12} R_{31} - R_{23} R_{31}}{R_{12} + R_{23} + R_{31}}$ $R_{1} = \frac{R_{31} R_{12}}{R_{12} + R_{23} + R_{31}}$ $R_{2} = \frac{R_{12} R_{23}}{R_{12} + R_{23} + R_{31}}$ $R_{3} = \frac{R_{23} R_{31}}{R_{12} + R_{23} + R_{31}}$	
d)	State super position theorem. Write steps to find current in an element using super position theorem.	4M
Ans:	Statement of superposition theorem: In any linear network containing two or more sources, the current in any element is equal to algebraic sum of the current caused by individual source acting alone, while the other sources are replaced for the time being by resistances equal to their internal resistances.	2M – statem nt
	Steps to find current using superposition theorem:	2M fo
	1. Select any one energy source.	steps
	2. Replace all other energy sources i.e. voltage source by short circuit and current source by open circuit.	
	3. Calculate voltage drop and branch current due to selected energy source.	
	4. Repeat steps 1,2,3 for each source individually.	
	5. Add algebraically the voltage drops and branch currents to obtain combined effect of all sources.	

Subject Name: Electric circuits and network

Subject Code: 223

22330

Model Answer

Q. No.	Sub Q. N.	Answers	Marking Scheme
4		Attempt any THREE of the following :	12- Tota Marks
	(a)	A series combination of resistance 100 ohm and capacitance 50µf is connected in series to a 230 V, 50HZ supply. Calculate (i) Capacitive reactance (ii) Current (iii) Power factor (iv) Power consumed	4M
	Ans:	Solution: For RC series circuit	
			1M
			1M
			1M

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Given R=100 1, C=50 Mf, V=230V, f=50 Hz	
	1M
(i) Capacitive Reactance	
$X_c = \frac{1}{2\pi c} = \frac{1}{2\pi x_5 0 \times 50 \times 10^6} = 63.66 \Omega$	
(ii) Current	
$=\frac{230}{118.54}$	
(iii) power factor	
$\cos \phi = \frac{R}{Z} = \frac{100}{118.54} = 0.8435$ leading	
P = VI cos 0 = 230×1.94 ×0.8435	
276.36 W	
Two unpedauces given by Z1 = 10 + j5 and Z2 = 8 + j9 are joined in parallel and connected	4M
across a voltage of V = 200 + j0. Calculate the circuit current and branch currents. Draw the vector diagram.	
Solution:	
Given, Z1=10+j5, Z2=8+j9, V=200+j0	
a V	(ii) Current $I = \frac{V}{Z} = \frac{V}{\sqrt{R^2 + \chi_c^2}} = \frac{230}{\sqrt{(100)^2 + (63.66)}} = \frac{230}{118.54}$ (iii) Power factor $\cos \phi = \frac{R}{Z} = \frac{100}{118.54} = \frac{3435}{1000}$ (iv) Power consumed $P = VT\cos \theta = 230 \times 1.94 \times 0.8435$ Evolutions a voltage of V = 200 + j0. Calculate the circuit current and branch currents. Draw the vector diagram.

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

Given: $R = 10.0L$, $L = 0.1 H$, $C = 10.0L$ f, $V = 200 V$ (i) Resonant frequency $f_{R} = \frac{1}{2\pi V_{LC}} \frac{1}{2\pi V_{0.1} \times 10 \times 10^{6}}$ The secondary of $f_{R} = \frac{1}{2\pi V_{LC}} \frac{1}{2\pi V_{0.1} \times 10 \times 10^{6}}$ The secondary $f_{R} = \frac{1}{2\pi V_{LC}} \frac{1}{2\pi V_{0.1} \times 10 \times 10^{6}}$ The secondary $f_{R} = \frac{1}{2\pi V_{LC}} \frac{1}{2\pi V_{0.1} \times 10 \times 10^{6}}$ The secondary $f_{R} = \frac{1}{2\pi V_{LC}} \frac{1}{2\pi V_{0.1} \times 10 \times 10^{6}}$ The secondary $f_{R} = \frac{1}{2\pi V_{LC}} \frac{1}{2\pi V_{0.1} \times 10 \times 10^{6}}$ The secondary $f_{R} = \frac{1}{2\pi V_{C}} 1$		(i) Resonant frequency $f_r = \frac{1}{2\pi V_{LC}} \frac{1}{2\pi V_{O} \cdot 1 \times 10 \times 10^6}$	2М
(iii) current at resonance $T = \frac{V}{Z}$ $= \frac{V}{R} = \frac{200}{10} = 20 \text{ A}$ (iii) Power at resonance		= 150 10 x 10 x 10 6	2M
(iii) current at resonance $T = \frac{V}{Z}$ $= \frac{V}{R} = \frac{200}{10} = 20 \text{ A}$ (iii) Power at resonance		= 150 10 x 10 x 10 6	2M
(iii) current at resonance $T = \frac{V}{Z}$ $= \frac{V}{R} = \frac{200}{10} = 20 \text{ A}$ (iii) Power at resonance		= 150 10 x 10 x 10 6	
(ii) Current at resonance, $F = \frac{V}{Z}$ $= \frac{V}{R} = \frac{200}{10} = \frac{20}{10} = \frac{159.13}{20} \text{ Hz}$ (iii) Power at resonance.			
(iii) Current at resonance, $T = \frac{V}{Z}$ $= \frac{V}{R} = \frac{200}{10} = 20 \text{ A}$ (iii) Power at resonance.		159.13 Hz	
$= \frac{V}{R} = \frac{200}{10} = 20 \text{ A}$ (iii) Power at resonance			110/
(iii) Power at resonance		$E = \frac{V}{2}$	1141
(iii) Power at resonance		$- \sqrt{-200} = 20 \text{ A}$	
	p ^l	R 10 =	
	70	in power at romana	
₩ W 1 [[[] \] []	5)		1M
ν Δ (00 φ		1 0001)	
λ= Λ Τ (02 λ		P= VI(OS P	
4 0001.)		= 200 ×00×1 - 4000W	
- 0.4	1	$= 200 \times 20 \times 1 = 4000 \omega$	
$= 200 \times 20 \times 1 = 4000 \text{ G}$,	: 4KW	
4		= 4KW	

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

15-P- 00 07 A	
4 12 AN B	
Tracing circuit from A 4B, we have 15 \$\implies \tau 10 \implies \tau 15 \tau 10 \implies \tau 15 \tau 10 \implies \tau 15 \tau 10 \ta	
Now 62, 62 & 42 resistor are in series,	
: we have $R_S = 6+6+4 = 16-2$: Norton's equivalent resistance $R_N = 16-2$	

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	a)	A coil of resistance 20 ohm and inductance of 200 μ H is in parallel with variable capacitor. This combination is in series with a resistance of 8000 ohm. The voltage of the supply is 200 V and at frequency of 10^6 Hz. Calculate	6M
		(i) Value of C to give resonance (ii) The Q of the coil (iii) Dynamic resistance of the circuit.	

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

22

Ans:	Ans:> (1) Inductive Reactance XL= 2TTfL	i)Value of C -2
	1 Industric Realtance	Marks,
	= 2×TT × 10 f × 200 × 10 f	ii)Q of coil -2
	- 1256 A	Marks iii)Dyna
	@ Impedance Z= I R1+X2	mic Resistan ce -2
	$= \sqrt{20^2 + (125^{\circ})^2}$	Marks
	z = 1256.16 $z = 1256.16$ $z = 1256.16$ $z = 12$ $z = 12$ $z = 12$	
	$2 z_1^2 = L/C \qquad \text{at rarallel}$	
	$\frac{1}{200\times10^{6}} = 126.6\times10^{6} = 126.6\times10^{6}$	
	$3 z_{L}^{2} = L/C \text{at parallel Rushame}$ $Value of C \rightarrow C = \frac{L}{Z_{L}^{2}} = \frac{200210^{6}}{(1256.16)^{2}} = 126.6 \times 10^{-12} \text{ f}$ $\text{at Rushame} = 126.6 \text{ pf}$	
	9 Q of wil = ZITT	
	$= \frac{271 \times 10^{6} \times 200 \times 10^{6}}{= 62.8}$	
	20	
	6 Dynamic Resistance of will circuit	
	$Z_{\gamma} = \frac{L}{CR}$	
	200×106 78957A	
	Dynamic Resistance of soil circuit $Z_{r} = \frac{L}{cR}$ $Z_{r} = \frac{200 \times 10^{6}}{126.6 \times 10^{-12} \times 20} = 78957$	

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

Step 1 -2.5 Marks

24

,Step 2-2.5Marks Final current 1 Mark

Contact - 9136008228

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
6.		Attempt any TWO of the following :	12- Total

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

30

	$\frac{V_1 - V_2 - 20}{20} - \frac{V_2}{40} - \frac{V_2 - 15}{30} = 0$
	$6V_1 - 6V_2 - 120 - 3V_2 - 4V_2 + 60$
	$6V_1 - 13V_2 - 60 = 0$
	$6V_1 - 13V_2 = 60 \rightarrow 4$
G	by solving 3 49 we get
	By solving 3 40 we get by 15, we get Multiplying 3 by 13 4 6 by 15, we get
	$V_1 = 21.13$
	$V_{a} = 0.4$
	517 0.12 A
	$\frac{1}{40} = \frac{5.17}{40} = 0.13 \text{ A}$
	$I_5 = \frac{V_2 - 15}{30} = \frac{5.17 - 15}{30} = -0.327A$
	15 = 30 = 30

in Fig No. 5. Also find maximum power consumed by it.

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

